

A novel Carbonic Anhydrase IX targeting radiopeptide, ⁶⁴Cu-PD-32766 and ¹⁷⁷Lu-PD-32766, exhibit promising theranostic potential in ccRCC tumors.

Yoshihide Mizukoshi¹, Shota Tsuchida¹, Hiroko Inaba¹, Tatsuro Kotake¹, Takanori Aoki¹, Kai Orihara², Yuichi Funase², Naoki Kanazawa², Hikaru Shimizu¹, Kaita Sawano², Kentaro Suzuki², Hayato Yanagida¹, Takeru Ehara¹, Hidetomo Kitamura¹, Satoshi Matsushima², Masato Murakami^{1,2} ¹PeptiDream Inc., Kawasaki, Kanagawa, Japan, ²PDRadiopharma Inc., Sammu, Chiba, Japan

- Carbonic Anhydrase IX (CA9) is a zinc metalloenzyme that regulates the pH for cell growth¹).
- CA9 is considered an attractive theranostic target and is upregulated in a variety of cancers, especially, in 95% of clear cell renal cell carcinoma (ccRCC) due to von Hippel-Lindau (VHL) loss of function²⁾.
- PD-32766, a selective CA9 binding macrocyclic peptide with DOTA, was identified by PeptiDream's proprietary PDPS (Peptide Discovery Platform System) technology, which displays peptides with huge diversity (> 10^{13}).
- Here we demonstrate the promising theranostic translational potency of PD-32766 for CA9 expressing tumors including ccRCC.

Figure 1. Structure and function of CA9³⁾ CA9 is an enzyme with an extracellular catalytic domain that converts carbon dioxide to bicarbonate ions

Figure2. Molecular mechanisms of CA9 expression in ccRCC⁴ Loss of VHL function stabilizes HIF1 α , which induces CA9 expression in ccRCC even under normoxia.

Figure3. CA9 H-score comparison between renal cancers and VMRC-RCW xenograft model VMRC-RCW (5 x 10⁶ cells) was subcutaneously inoculated into 6-wk old BALB/c nude mice. On day 17 after inoculation, the tumors were collected. VMRC-RCW tumors and Human kidney tumor tissue array (KD2001, TissueArray.Com LLC) were immuno-stained with the anti-CAIX antibody (mouse clone M76) at 0.38 µg/ml. (a) The H-score was calculated according to the following formula: H-score = $[(0 \times \% \text{ negative cells}) + (1 \times \% \text{ weak positive cells}) + (2 \times \% \text{ moderate})]$ positive cells) + (3 x % strong positive cells). (b) Representative IHC staining images of ccRCC tissue array and VMRC-RCW tumors. pRCC = papillary renal cell carcinoma, chRCC = Chromophobe renal cell carcinoma, MAG = magnification. Similar CA9 H-score indicates VMRC-RCW xenograft model is a clinically relevant system.

Figure4

PD-2

Surface plasmon resonance (SPR) analysis of PD-32766 To analyze cross-reactivity of PD-32766 to other CA family proteins, His tagged human CA4, CA9 and CA12 were captured through His antibody on a sensor chip. To analyze species cross-reactivity of PD-32766, Fc tagged human mouse, rat, monkey, dog CA9 proteins were captured through Protein A on a sensor chip. PD-32766, ^{nat}Cu-PD-32766 or ^{nat}Lu-PD-32766 was flowed onto a sensor chip in which protein was captured, and the association and disassociation constants were analyzed.

Figure 5. PET-CT imaging of ⁶⁴Cu-PD-32766 in VMRC-RCW xenograft mouse ⁶⁴Cu-PD-32766 (4.3 MBq) was injected intravenously to xenografted mouse (N=3). PET-CT imaging was performed at 1-, 4-, 24-, and 48-hours post-dosing. PET-CT= positron emission tomography- computed tomography.

	140
	120
	100
50	80
11 %	60
	40
	20
	Δ

PD-32766 shows selective and strong binding to CA9.								
44	CA9	CA12	Table1. CA9 binding affinity of metal-conjugate PD-32766					
	18	18 14		Ka(1/Ms)	kd(1/s)	KD (M)		
	Band State S	Band State	PD-32766	7.51 x 10 ⁵	4.57 x 10 ⁻⁵	6.09 x 10 ⁻¹¹		
500 700 900	2 -2 -100 100 300 500 700 900 Time	-2	^{nat} Cu-PD-32766	3.78 x 10 ⁻⁵	6.11 x 10 ⁻⁵	1.11 x 10 ⁻¹⁰		
. Cross-re	eactivity to other C	CA family proteins	^{nat} Lu-PD-32766	8.44 x 10 ⁵	4.76 x 10 ⁻⁵	5.64 x 10 ⁻¹¹		
Table2. Species cross-reactivity of PD-32766 analysis (KD (M))								
	Human CA9	Mouse CA9	Rat CA9	Monkey CA9 Dog CA		Dog CA9		
32766	6.09 x 10 ⁻¹¹	4.97 x 10 ⁻⁸	4.63 x 10 ⁻⁸	3.67 x 10 ⁻¹⁰ 4.37		4.37 x 10 ⁻¹⁰		

PD-32766 clearly detects ccRCC tumor with rapid renal clearance.

Figure6. Biodistribution of ⁶⁴Cu-PD-32766 and ¹⁷⁷Lu-PD-32766 in VMRC-RCW xenograft model

VMRC-RCW xenograft mice were prepared in the same method as for Figure 3. Mice were injected intravenously with 4.3 MBq of ⁶⁴Cu-PD-32766 or 2.8 MBq of ¹⁷⁷Lu-PD-32766. At 4, 24, and 48 h post-injection, mice (N=3, each time point) were sacrificed. The percentage injected dose per gram (%ID/g) was then calculated by weighing the organ and counting the radioactivity with a gamma counter. Data are shown as mean \pm SD.

Figure7. In vivo efficacy of ¹⁷⁷Lu-PD-32766 in VMRC-RCW xenograft mice. At 14 day after VMRC-RCW inoculation, mice were divided into 3 groups with 6 mice per group: (1) saline (2) single dose of ¹⁷⁷Lu-PD-32766 (30 MBq) (3) repeated dose of ¹⁷⁷Lu-PD-32766(30 MBq, QW 3times). A 30 MBq dose to mice is equivalent to 7.32 GBq in human, which is a clinically used dose. (cf: Lutathera® is administered at 7.4 GBq/dose in human⁵). Data are shown as mean \pm SEM.

Î 10,000		Male	Table4. Predicted human ⁶⁴ Cu-PD-32766 dosimetry based on rat biodistribution of ⁶⁴ Cu-PD-32766				
	1,000 - Female		Organ	Absorbed dose (mGy/MBq)	EBRT limit (Gy)	Allowed dose (GBq)	
			Kidneys	0.159	236)	145	
			Urinary bladder wall	0.060	65 ⁷⁾	1078	
	BLOQ: 5 ng/mL		Lower Large Intestine	0.015	45 ⁷⁾	2961	
	V 12	1 - 1 - 1 16 20 24	Small intestine	0.013	40 ⁷⁾	2985	
L 0 4	$\frac{0}{12}$ Time (hr)	10 20 24	Liver	0.010	30 ⁶⁾	3036	
igure8. Plasma concentration of PD-32766 in Rats			Stomach wall	0.008	$45^{6)}$	5747	
			Upper Large Intestine	0.006	45 ⁷⁾	7732	
Table3. PK parameter of PD-32766 in ratsSpleen0.005			$40^{6)}$	8097			
	Male	Female	Heart wall	0.004	$26^{6)}$	7242	
T _{1/2} (h)	0.48 ± 0.04	0.57 ± 0.10	Red Marrow	0.003	$2^{6)}$	671	
$C_0 (ng/mL)$	9112 ± 334	7372 ± 2126	Lungs	0.002	20 ⁸⁾	8969	
AUC _{last} (h*ng/mL)	4353 ± 320	4181 ± 465	Predicted clinical do	redicted clinical dose of ⁶⁴ Cu-PD-32766 is 148 MBq.			
			Human estimated ef	fective dose (m	ale): 0.0118 r	nSv/MBq.	

PK parameter and dosimetry test in rat To evaluate PK parameter in rat, male and female SD rats (n=3 each) were injected intravenously with 2.5 mg/kg of PD-32766. At 0.5-, 1-, 2-, 4-, 6-, 24-hours post-dose, the plasma concentration of PD-32766 was measured by LC-MS. At 6-, 24-hours post-dose, the plasma concentration of PD-32766 was below the detection limit. For dosimetry, SD rats were injected intravenously with 2.3 MBg of ⁶⁴Cu-PD-32766. At 0.082-, 1-, 2-, 4-, 6-, 20-, 24hours post-dose, radioactivity levels were measured in each organ by cut-and-count method (N=3, each time point). Predicted human dosimetry and human estimated effective dose were calculated using OLINDA/EXM version 1.0. . BLOQ= Below quantifiable limit, EBRT= External beam radiotherapy.

- ccRCC xenograft mouse model at a clinical dose.
- including ccRCC.

Swietach P, Patiar S, Supuran C
Bui MH, Seligson D, Han KR, I
Alterio V, Hilvo M, Di Fiore A,
Rathmell WK, Chen S. Expert I

- 7)

¹⁷⁷Lu-PD-32766 showed robust *in vivo* anti-tumor effects.

Days after 1st dose

PD-32766 has rapid blood clearance and large safety margin.

Conclusion

• PD-32766 selectively and strongly binds to CA9 regardless to metal ions chelating.

• ⁶⁴Cu-PD-32766 highly specifically detected CA9 expressing tumors in PET-CT, which is similar to the biodistribution of ¹⁷⁷Lu-PD-32766, indicating that ⁶⁴Cu-PD-32766 PET imaging is valuable to select patients with CA9 positive tumors, and evaluation of the efficacy of ¹⁷⁷Lu-PD-32766 treatment. • ¹⁷⁷Lu-PD-32766 showed evident *in vivo* anti-tumor effect and good tolerability in a clinically relevant

Taken together, PD-32766 is a potential Best-in-class theranostic drug for CA9 expressing tumors

Clinical imaging study of ⁶⁴Cu-PD-32766 in ccRCC patients is on-going in Japan.

Reference

CT, et al. J Biol Chem. 2009;284(30):20299-310. Pantuck AJ, Dorey FJ, et al. Clin Cancer Res. 2003;9(2):802-11 Supuran CT, Pan P, Parkkila S, et al. PNAS. 2009 Sep 22;106(38):16233-8. Rev Anticancer Ther. 2008 Jan;8(1):63-73. Strosberg J, El-Haddad G, Wolin E, et al. N Engl J Med. 2017 Jan 12;376(2):125-135. Wahl RL, Sgouros G, Iravani A, et al. J Nucl Med. 2021 Dec;62(Suppl 3):23S-35S. B Emami, J Lyman, A Brown, et al. Int J Radiat Oncol Biol Phys. 1991 May 15;21(1):109-22. 8) Lawrence BM, Ellen DY, Andrew J, et al. Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S10-9